Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Arch Insect Biochem Physiol ; 115(4): e22107, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591567

RESUMO

RNA interference (RNAi)-based gene silencing is a feasible and sustainable technology for the management of hemipteran pests by double-stranded RNA involvement, including small-interfering RNA, microRNA, and Piwi-interacting RNA (piRNA) pathways, that may help to decrease the usage of chemical insecticides. However, only a few data are available on the somatic piRNAs and their biogenesis genes in Riptortus pedestris, which serves as a significant pest of soybean (Glycine max). In this study, two family members of the PIWI gene were identified and characterized in R. pedestris, containing Argonaute3 (RpAgo3) and Aubergine (RpAub) genes with conserved protein domains, and their clusters were validated by phylogenetic analysis. In addition, they were widely expressed in all developmental stages of the whole body of R. pedestris and had lower expression levels in R. pedestris guts under different rearing conditions based on previous transcriptome sequencing. Furthermore, abundant clean reads were filtered to a total number of 45,998 piRNAs with uridine bias at the first nucleotide (nt) position and 26-32 nt in length by mapping onto the reference genome of R. pedestris according to our previous whole-transcriptome sequencing. Finally, our data revealed that gut bacterial changes were significantly positively or negatively associated with differentially expressed piRNAs among the five comparison groups with Pearson correlation analysis. In conclusion, these findings paved new avenues for the application of RNAi-based biopesticides for broad-spectrum hemipteran pest control.


Assuntos
Heterópteros , RNA de Interação com Piwi , Animais , Filogenia , Heterópteros/genética , Heterópteros/metabolismo , Soja , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
2.
BMC Genomics ; 25(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565997

RESUMO

Food security is important for the ever-growing global population. Soybean, Glycine max (L.) Merr., is cultivated worldwide providing a key source of food, protein and oil. Hence, it is imperative to maintain or to increase its yield under different conditions including challenges caused by abiotic and biotic stresses. In recent years, the soybean pod-sucking stinkbug Riptortus pedestris has emerged as an important agricultural insect pest in East, South and Southeast Asia. Here, we present a genomics resource for R. pedestris including its genome assembly, messenger RNA (mRNA) and microRNA (miRNA) transcriptomes at different developmental stages and from different organs. As insect hormone biosynthesis genes (genes involved in metamorphosis) and their regulators such as miRNAs are potential targets for pest control, we analyzed the sesquiterpenoid (juvenile) and ecdysteroid (molting) hormone biosynthesis pathway genes including their miRNAs and relevant neuropeptides. Temporal gene expression changes of these insect hormone biosynthesis pathways were observed at different developmental stages. Similarly, a diet-specific response in gene expression was also observed in both head and salivary glands. Furthermore, we observed that microRNAs (bantam, miR-14, miR-316, and miR-263) of R. pedestris fed with different types of soybeans were differentially expressed in the salivary glands indicating a diet-specific response. Interestingly, the opposite arms of miR-281 (-5p and -3p), a miRNA involved in regulating development, were predicted to target Hmgs genes of R. pedestris and soybean, respectively. These observations among others highlight stinkbug's responses as a function of its interaction with soybean. In brief, the results of this study not only present salient findings that could be of potential use in pest management and mitigation but also provide an invaluable resource for R. pedestris as an insect model to facilitate studies on plant-pest interactions.


Assuntos
Heterópteros , Hormônios de Inseto , MicroRNAs , Animais , Soja/genética , Heterópteros/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão Gênica
3.
Sci Data ; 11(1): 417, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654007

RESUMO

The stink bug Arma custos (Hemiptera: Pentatomidae) is a predatory enemy successfully used for biocontrol of lepidopteran and coleopteran pests in notorious invasive species. In this study, a high-quality chromosome-scale genome assembly of A. custos was achieved through a combination of Illumina sequencing, PacBio HiFi sequencing, and Hi-C scaffolding techniques. The final assembled genome was 969.02 Mb in size, with 935.94 Mb anchored to seven chromosomes, and a scaffold N50 length of 135.75 Mb. This genome comprised 52.78% repetitive elements. The detected complete BUSCO score was 99.34%, indicating its completeness. A total of 13,708 protein-coding genes were predicted in the genome, and 13219 of them were annotated. This genome provides an invaluable resource for further research on various aspects of predatory bugs, such as biology, genetics, and functional genomics.


Assuntos
Genoma de Inseto , Heterópteros , Animais , Heterópteros/genética , Cromossomos de Insetos
4.
PLoS One ; 19(3): e0299298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547075

RESUMO

We here describe the external morphology and complete mitochondrial genome characteristics of Mecidea indica Dallas, 1851, and clarify the evolutionary rate and divergence time. The M. indica mitochondrial genome length is 15,670 bp, and it exhibits a typical high A+T-skew (76.31%). The sequence shows strong synteny with the original gene arrangement of Drosophila yakuba Burla, 1954 without rearrangement. The M. indica mitochondrial genome characteristics were analyzed, and phylogenetic trees of Pentatomidae were reconstructed using Bayesian methods based on different datasets of the mitochondrial genome datasets. Phylogenetic analysis shows that M. indica belongs to Pentaotominae and form a sister-group with Anaxilaus musgravei Gross, 1976, and Asopinae is highly supported as monophyletic. Molecular clock analysis estimates a divergence time of Pentatomidae of 122.75 Mya (95% HPD: 98.76-145.43 Mya), within the Mesozoic Cretaceous; the divergence time of M. indica and A. musgravii was no later than 50.50 Mya (95% HPD: 37.20-64.80 Mya). In addition, the divergence time of Asopinae was 62.32 Mya (95% HPD: 47.08-78.23 Mya), which was in the Paleogene of the Cenozoic era. This study is of great significance for reconstructing the phylogeny of Pentatomidae and providing insights into its evolutionary history.


Assuntos
Genoma Mitocondrial , Heterópteros , Animais , Filogenia , Teorema de Bayes , Heterópteros/genética , Evolução Biológica
5.
Mol Phylogenet Evol ; 195: 108055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485106

RESUMO

Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.


Assuntos
Soja , Heterópteros , Animais , Soja/genética , Filogenia , Variação Genética , Evolução Molecular , DNA Mitocondrial/genética , Filogeografia , Ásia Oriental , Heterópteros/genética
6.
Commun Biol ; 7(1): 257, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431762

RESUMO

Herbivorous insects employ an array of salivary proteins to aid feeding. However, the mechanisms behind the recruitment and evolution of these genes to mediate plant-insect interactions remain poorly understood. Here, we report a potential horizontal gene transfer (HGT) event from bacteria to an ancestral bug of Eutrichophora. The acquired genes subsequently underwent duplications and evolved through co-option. We annotated them as horizontal-transferred, Eutrichophora-specific salivary protein (HESPs) according to their origin and function. In Riptortus pedestris (Coreoidea), all nine HESPs are secreted into plants during feeding. The RpHESP4 to RpHESP8 are recently duplicated and found to be indispensable for salivary sheath formation. Silencing of RpHESP4-8 increases the difficulty of R. pedestris in probing the soybean, and the treated insects display a decreased survivability. Although silencing the other RpHESPs does not affect the salivary sheath formation, negative effects are also observed. In Pyrrhocoris apterus (Pyrrhocoroidea), five out of six PaHESPs are secretory salivary proteins, with PaHESP3 being critical for insect survival. The PaHESP5, while important for insects, no longer functions as a salivary protein. Our results provide insight into the potential origin of insect saliva and shed light on the evolution of salivary proteins.


Assuntos
Transferência Genética Horizontal , Heterópteros , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Heterópteros/genética , Heterópteros/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
7.
Mol Phylogenet Evol ; 195: 108056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493987

RESUMO

The yellow spotted stink bug (YSSB), Erthesina fullo (Thunberg, 1783) is an important Asian pest that has recently successfully invaded Europe and an excellent material for research on the initial stage of biological invasion. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of YSSB for the first time based on population genetic methods [using double digest restriction-site associated DNA (ddRAD) data and mitochondrial COI and CYTB] and ecological niche modelling. The results showed that four lineages (east, west, southwest, and Hainan Island) were established in the native range with a strong east-west differentiation phylogeographical structure, and the violent climate fluctuation might cause population divergence during the Middle and Upper Pleistocene. In addition, land bridges and monsoon promote dispersal and directional genetic exchanging between island populations and neighboring continental populations. The east lineage (EA) was identified as the source of invasion in Albania. EA had the widest geographical distribution among all other lineages, with a star-like haplotype network with the main haplotype as the core. It also had a rapid population expansion history, indicating that the source lineage might have stronger diffusion ability and adaptability. Our findings provided a significant biological basis for fine tracking of invasive source at the lineage or population level and promote early invasion warning of potential invasive species on a much subtler lineage level.


Assuntos
Heterópteros , Animais , Filogeografia , Filogenia , Heterópteros/genética , Evolução Biológica , Mitocôndrias/genética , DNA Mitocondrial/genética , Variação Genética
8.
Arch Insect Biochem Physiol ; 115(2): e22094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409857

RESUMO

The predatory stink bug Arma custos has been selected as an effective biological control agent and has been successfully massly bred and released into fields for the control of a diverse insect pests. As a zoophytophagous generalist, A. custos relies on a complex neuropeptide signaling system to prey on distinct food and adapt to different environments. However, information about neuropeptide signaling genes in A. custos has not been reported to date. In the present study, a total of 57 neuropeptide precursor transcripts and 41 potential neuropeptide G protein-coupled receptor (GPCR) transcripts were found mainly using our sequenced transcriptome data. Furthermore, a number of neuropeptides and their GPCR receptors that were enriched in guts and salivary glands of A. custos were identified, which might play critical roles in feeding and digestion. Our study provides basic information for an in-depth understanding of biological and ecological characteristics of the predatory bug and would aid in the development of better pest management strategies based on the effective utilization and protection of beneficial natural enemies.


Assuntos
Hemípteros , Heterópteros , Neuropeptídeos , Animais , Heterópteros/genética , Receptores Acoplados a Proteínas G/genética , Neuropeptídeos/genética
9.
Insect Biochem Mol Biol ; 166: 104085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307215

RESUMO

In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.


Assuntos
Besouros , Heterópteros , Feminino , Masculino , Animais , Heterópteros/genética , Diferenciação Sexual , Desenvolvimento Sexual
10.
Evolution ; 78(4): 635-651, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38253050

RESUMO

Sexually selected weapons, such as the antlers of deer, claws of crabs, and tusks of beaked whales, are strikingly diverse across taxa and even within groups of closely related species. Phylogenetic comparative studies have typically taken a simplified approach to investigate the evolution of weapon diversity, examining the gains and losses of entire weapons, major shifts in size or type, or changes in location. Less understood is how individual weapon components evolve and assemble into a complete weapon. We addressed this question by examining weapon evolution in the diverse, multi-component hind-leg and body weapons of leaf-footed bugs, superfamily Coreoidea (Hemiptera: Heteroptera). Male leaf-footed bugs use their morphological weapons to fight for access to mating territories. We used a large multilocus dataset comprised of ultraconserved element loci for 248 species and inferred evolutionary transitions among component states using ancestral state estimation. Our results suggest that weapons added components over time with some evidence of a cyclical evolutionary pattern-gains of components followed by losses and then gains again. Furthermore, our best estimate indicated that certain trait combinations evolved repeatedly across the phylogeny, suggesting that they function together in battle or that they are genetically correlated. This work reveals the remarkable and dynamic evolution of weapon form in the leaf-footed bugs and provides insights into weapon assembly and disassembly over evolutionary time.


Assuntos
Cervos , Heterópteros , Animais , Filogenia , Heterópteros/genética , Heterópteros/anatomia & histologia , Extremidade Inferior , , Baleias
11.
BMC Genomics ; 25(1): 53, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212677

RESUMO

BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.


Assuntos
Heterópteros , Transcriptoma , Animais , Heterópteros/genética , Glândulas Salivares , Perfilação da Expressão Gênica/métodos , Saliva
12.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256014

RESUMO

The SSU nuclear rDNA (encoding 18S ribosomal RNA) is one of the most frequently sequenced genes in the molecular analysis of insects. Molecular apomorphies in the secondary and tertiary structures of several 18S rRNA length-variable regions (LVRs) located within the V2, V4, and V7 hypervariable regions can be good indicators for recovering monophyletic groups within some heteropteran families. Among the LVRs that have been analysed, the LVR L in the V4 hypervariable region is the longest and most crucial for such assessments. We analysed the 18S rRNA V4 hypervariable region sequences of 45 species from the family Cydnidae, including all 6 subfamilies (Amaurocorinae, Amnestinae, Cephalocteinae, Cydninae, Garsauriinae, and Sehirinae) and three pentatomoid families (Parastrachiidae, Thaumastellidae, and Thyreocoridae), which have often been included in the broadly defined Cydnidae family. This is the first time that representatives of all Cydnidae subfamilies have been included in a molecular analysis. Only taxa from two subfamilies, Sehirinae and Cydninae, have been used in previous molecular studies. The secondary and tertiary structures of the LVR L were predicted for each species using the two-step procedure already accepted for such analyses to recover any molecular apomorphy essential for determining monophyly. The results of our comparative studies contradict the current understanding of the relationships among burrowing bugs and the current family classification.


Assuntos
Heterópteros , Humanos , Animais , Heterópteros/genética , RNA Ribossômico 18S/genética , DNA Ribossômico
13.
Arch Insect Biochem Physiol ; 115(1): e22075, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288487

RESUMO

Molecular data has become a powerful tool for species delimitation, particularly among those that present limited morphological differences; while the mitochondrial genome, with its moderate length, low cost of sequencing and fast lineage sorting, has emerged as a practical data set. Due to the limited morphological differences among the closely related species of Carbula Stål 1865, the species boundaries between Carbula abbreviata (Motschulsky, 1866), Carbula humerigera (Uhler, 1860), and Carbula putoni (Jakovlev, 1876) have remained particularly unclear. In this study, we applied two phylogenetic reconstruction methods to two data sets (mitogenome and COI) to assess the phylogeny of Carbula distributed in Asia, and five species delimitation methods to determine the boundaries between East Asian Carbula species. Our phylogenetic analyses showed Carbula to be paraphyletic; the seven known species distributed within East Asia to form a single monophyletic group, and within this, C. abbreviata, C. humerigera, C. putoni and middle-type to comprise a C. humerigera species complex. Our results show that mitogenome data alone, while effective in the differentiation of more distantly related Carbula species, is not sufficient to accurately delimit the species within this newly described complex.


Assuntos
Hemípteros , Heterópteros , Animais , Hemípteros/genética , Genes Mitocondriais , Filogenia , Heterópteros/genética
14.
Insect Sci ; 31(1): 119-133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37287390

RESUMO

RNA interference (RNAi) is a powerful tool that post-transcriptionally silences target genes in eukaryotic cells. However, silencing efficacy varies greatly among different insect species. Recently, we met with little success when attempting to knock down genes in the mirid bug Apolygus lucorum via dsRNA injection. The disappearance of double-stranded RNA (dsRNA) could be a potential factor that restricts RNAi efficiency. Here, we found that dsRNA can be degraded in midgut fluids, and a dsRNase of A. lucorum (AldsRNase) was identified and characterized. Sequence alignment indicated that its 6 key amino acid residues and the Mg2+ -binding site were similar to those of other insects' dsRNases. The signal peptide and endonuclease non-specific domain shared high sequence identity with the brown-winged green stinkbug Plautia stali dsRNase. AldsRNase showed high salivary gland and midgut expression and was continuously expressed through the whole life cycle, with peaks at the 4th instar ecdysis in the whole body. The purified AldsRNase protein obtained by heterologously expressed can rapidly degrade dsRNA. When comparing the substrate specificity of AldsRNase, 3 specific substrates (dsRNA, small interfering RNA, and dsDNA) were all degraded, and the most efficient degradation is dsRNA. Subsequently, immunofluorescence revealed that AldsRNase was expressed in the cytoplasm of midgut cells. Through cloning and functional study of AldsRNase, the enzyme activity and substrate specificity of the recombinant protein, as well as the subcellular localization of nuclease, the reason for the disappearance of dsRNA was explained, which was useful in improving RNAi efficiency in A. lucorum and related species.


Assuntos
Heterópteros , RNA de Cadeia Dupla , Animais , RNA de Cadeia Dupla/genética , Alinhamento de Sequência , Interferência de RNA , Insetos/genética , Clonagem Molecular , Heterópteros/genética
15.
J Insect Physiol ; 152: 104598, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081537

RESUMO

Lygus hesperus Knight is an important insect pest of crops across western North America, with field management heavily reliant on the use of chemical insecticides. Because of the evolution of resistance to these insecticides, effective and environmentally benign pest management strategies are needed. Traditional sterile insect technique (SIT) has been successfully employed to manage or eradicate some insect pests but involves introducing irradiated insects with random mutations into field populations. New genetically-driven SIT techniques are a safer alternative, causing fixed mutations that manipulate individual genes in target pests to produce sterile individuals for release. Here, we identified seven ß-tubulin coding genes from L. hesperus and show that Lhßtub2 is critical in male sperm production and fertility. Lhßtub2 is expressed primarily in the male testes and targeting of this gene by RNA interference or gene editing leads to male sterility.


Assuntos
Heterópteros , Inseticidas , Humanos , Masculino , Animais , Tubulina (Proteína)/genética , Sementes , Heterópteros/genética , Espermatogênese
16.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38113473

RESUMO

The zoophytophagous stink bug, Nesidiocoris tenuis, is a promising natural enemy of micro-pests such as whiteflies and thrips. This bug possesses both phytophagous and entomophagous food habits, enabling it to obtain nutrition from both plants and insects. This trait allows us to maintain its population density in agricultural fields by introducing insectary plants, even when the pest prey density is extremely low. However, if the bugs' population becomes too dense, they can sometimes damage crop plants. This dual character seems to arise from the food preferences and chemosensation of this predator. To understand the genomic landscape of N. tenuis, we examined the whole genome sequence of a commercially available Japanese strain. We used long-read sequencing and Hi-C analysis to assemble the genome at the chromosomal level. We then conducted a comparative analysis of the genome with previously reported genomes of phytophagous and hematophagous stink bugs to focus on the genetic factors contributing to this species' herbivorous and carnivorous tendencies. Our findings suggest that the gustatory gene set plays a pivotal role in adapting to food habits, making it a promising target for selective breeding. Furthermore, we identified the whole genomes of microorganisms symbiotic with this species through genomic analysis. We believe that our results shed light on the food habit adaptations of N. tenuis and will accelerate breeding efforts based on new breeding techniques for natural enemy insects, including genomics and genome editing.


Assuntos
Heterópteros , Animais , Heterópteros/genética , Comportamento Alimentar , Densidade Demográfica , Herbivoria
17.
Gene ; 893: 147911, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863301

RESUMO

Sunn pest (Eurygaster integriceps Puton) is major wheat pest causing economic damage. Neuropeptides and their receptors, G protein-coupled receptors (GPCRs), are involved in the regulation of insect physiology and behavior. Herein, a transcriptome-wide analysis was conducted in order to identify genes encoding neuropeptides, and putative GPCRs to gain insight into neuropeptide-modulated processes. De novo transcriptome assembly was undertaken using paired-end sequence reads derived from RNA samples collected from whole adults and yielded 582,398 contigs. In total, 46 neuropeptides have been identified, encompassing various known insect neuropeptide families. In addition, we discovered four previously uncharacterized neuroparsin peptides, which contributes to our understanding of the neuropeptide landscape. Furthermore, 85 putative neuropeptide GPCRs were identified, comprising three classes of GPCRs, A, B, C, and LGR, of which class C is not widely reported in insects. In addition, the identified GPCRs exhibited a remarkable 80% homology with the GPCRs found in the brown marmorated stink bug. It is noteworthy that these GPCRs displayed only a 20% homology to GPCRs from many other insect species. This information may be used to understand the neuropeptide-modulated physiology and behavior of Eurygaster integriceps, and to develop specific neuropeptide-based pest management strategies.


Assuntos
Heterópteros , Neuropeptídeos , Humanos , Animais , Transcriptoma/genética , Heterópteros/genética , Neuropeptídeos/genética , Insetos/genética , Receptores Acoplados a Proteínas G/genética
18.
Microbiome ; 11(1): 244, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932839

RESUMO

BACKGROUND: The true bugs (Heteroptera) occupy nearly all of the known ecological niches of insects. Among them, as a group containing more than 30,000 species, the phytophagous true bugs are making increasing impacts on agricultural and forestry ecosystems. Previous studies proved that symbiotic bacteria play important roles in these insects in fitting various habitats. However, it is still obscure about the evolutionary and ecological patterns of the microorganisms of phytophagous true bugs as a whole with comprehensive taxon sampling. RESULTS: Here, in order to explore the symbiotic patterns between plant-feeding true bugs and their symbiotic microorganisms, 209 species belonging to 32 families of 9 superfamilies had been sampled, which covered all the major phytophagous families of true bugs. The symbiotic microbial communities were surveyed by full-length 16S rRNA gene and ITS amplicons respectively for bacteria and fungi using the PacBio platform. We revealed that hosts mainly affect the dominant bacteria of symbiotic microbial communities, while habitats generally influence the subordinate ones. Thereafter, we carried out the ancestral state reconstruction of the dominant bacteria and found that dramatic replacements of dominant bacteria occurred in the early Cretaceous and formed newly stable symbiotic relationships accompanying the radiation of insect families. In contrast, the symbiotic fungi were revealed to be horizontally transmitted, which makes fungal communities distinctive in different habitats but not significantly related to hosts. CONCLUSIONS: Host and habitat determine microbial communities of plant-feeding true bugs in different roles. The symbiotic bacterial communities are both shaped by host and habitat but in different ways. Nevertheless, the symbiotic fungal communities are mainly influenced by habitat but not host. These findings shed light on a general framework for future microbiome research of phytophagous insects. Video Abstract.


Assuntos
Heterópteros , Microbiota , Animais , RNA Ribossômico 16S/genética , Evolução Biológica , Heterópteros/genética , Heterópteros/microbiologia , Insetos , Plantas/genética , Fungos , Bactérias
19.
J Econ Entomol ; 116(6): 2173-2183, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37843396

RESUMO

Piezodorus guildinii (Westwood, 1837) (Hemiptera: Pentatomidae) is an important arthropod pest of soybean (Glycine max (L.) Merr.) throughout American continents. However, the historical events associated with its dispersion are poorly understood. In this study, we employed a phylogeographic approach to investigate the origin and demographic history of P. guildinii in Brazil. We analyzed the cytochrome c oxidase subunit I and Cytb gene sequences of P. guildinii individuals collected in Brazil's 5 soybean production macro-regions and cross-referenced this information with sequences available in public databases. Our findings support an older Caribbean basin establishment for the current genealogical strains of P. guildinii, with subsequent dispersion to Brazil around 0.97 Mya. No secondary dispersion of this species from the Caribbean region to soybean areas in Brazil was identified. The Brazilian populations of P. guildinii are genetically structured across the country's soybean macro-regions and show strong signals of continuous demographic and spatial expansion in Brazil, which may be accelerated by the soybean cropping landscape in the country. The populations from the northern region (MR5) are older than the Central and South populations. The signs of demographic expansion indicate that P. guildinii populations are increasing their effective size in soybean regions, which could reflect its importance as a soybean pest in the coming years.


Assuntos
Hemípteros , Heterópteros , Humanos , Animais , Hemípteros/genética , Brasil , Heterópteros/genética , /genética
20.
PLoS One ; 18(10): e0292738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37819898

RESUMO

Aelia fieberi Scott, 1874 is a pest of crops. The mitogenome of A. fieberi (OL631608) was decoded by next-generation sequencing. The mitogenome, with 41.89% A, 31.70% T, 15.44% C and 10.97% G, is 15,471 bp in size. The phylogenetic tree showed that Asopinae and Phyllocephalinae were monophyletic; however, Pentatominae and Podopinae were not monophyletic, suggesting that the phylogenetic relationships of Pentatomoidae are complex and need revaluation and revision. Phytophagous bugs had a ~20-nucleotide longer in nad2 than predatory bugs. There were differences in amino acid sequence at six sites between phytophagous bugs and predatory bugs. The codon usage analysis indicated that frequently used codons used either A or T at the third position of the codon. The analysis of amino acid usage showed that leucine, isoleucine, serine, methionine, and phenylalanine were the most abundant in 53 species of Pentatomoidae. Thirteen protein-coding genes were evolving under purifying selection, cox1, and atp8 had the strongest and weakest purifying selection stress, respectively. Phytophagous bugs and predatory bugs had different evolutionary rates for eight genes. The mitogenomic information of A. fieberi could fill the knowledge gap for this important crop pest. The differences between phytophagous bugs and predatory bugs deepen our understanding of the effect of feeding habit on mitogenome.


Assuntos
Genoma Mitocondrial , Hemípteros , Heterópteros , Animais , Hemípteros/genética , Filogenia , Heterópteros/genética , Aminoácidos/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...